λ-Projectively Related Finsler Metrics and Finslerian Projective Invariants
Authors
Abstract:
In this paper, by using the concept of spherically symmetric metric, we defne the notion of λ-projectively related metrics as an extension of projectively related metrics. We construct some non-trivial examples of λ-projectively related metrics. Let F and G be two λ-projectively related metrics on a manifold M. We find the relation between the geodesics of F and G and prove that any geodesic of F is a multiple of a geodesic of G and the other way around. We prove that the Douglas metrics, Weyl metrics and generalized Douglas-Weyl metrics are λ-projective invariants.
similar resources
Finsler metrics of scalar flag curvature and projective invariants
In this paper, we define a new projective invariant and call it W̃ -curvature. We prove that a Finsler manifold with dimension n ≥ 3 is of constant flag curvature if and only if its W̃ -curvature vanishes. Various kinds of projectively flatness of Finsler metrics and their equivalency on Riemannian metrics are also studied. M.S.C. 2010: 53B40, 53C60.
full textProjectively Flat Finsler Metrics of Constant Curvature
It is the Hilbert’s Fourth Problem to characterize the (not-necessarilyreversible) distance functions on a bounded convex domain in R such that straight lines are shortest paths. Distance functions induced by a Finsler metric are regarded as smooth ones. Finsler metrics with straight geodesics said to be projective. It is known that the flag curvature of any projective Finsler metric is a scala...
full textProjective complex Finsler metrics
In this paper we obtain the conditions in which two complex Finsler metrics are projective, i.e. have the same geodesics as point sets. Two important classes of such metrics are submitted to our attention: conformal projective and weakly projective complex Finsler spaces. For each of them we study the transformations of the canonical connection. We pay attention for local projectivity with a pu...
full textOn a class of locally projectively flat Finsler metrics
In this paper we study Finsler metrics with orthogonal invariance. We find a partial differential equation equivalent to these metrics being locally projectively flat. Some applications are given. In particular, we give an explicit construction of a new locally projectively flat Finsler metric of vanishing flag curvature which differs from the Finsler metric given by Berwald in 1929.
full text1786 - 0091 Projective Einstein Finsler Metrics
In the present paper, we investigate the necessary and sufficient condition of a given Finsler metric to be Einstein. The considered Einstein Finsler metric in the study describes all different kinds of Einstein metrics which are pointwise projective to the given one.
full textOn Projectively Related Einstein Metrics
In this paper we study pointwise projectively related Einstein metrics (having the same geodesics as point sets). We show that pointwise projectively related Einstein metrics satisfy a simple equation along geodesics. In particular, we show that if two pointwise projectively related Einstein metrics are complete with negative Einstein constants , then one is a multiple of another.
full textMy Resources
Journal title
volume 6 issue 4
pages 0- 0
publication date 2021-01
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023